Lq Matrix Completion
نویسندگان
چکیده
Rank minimization problems, which consist of finding a matrix of minimum rank subject to linear constraints, have been proposed in many areas of engineering and science. A specific problem is the matrix completion problem in which a low rank data matrix is recovered from incomplete samples of its entries by solving a rank penalized least squares problem. The rank penalty is in fact the l0 norm of the matrix singular values. A convex relaxation of this penalty is the commonly used l1 norm of the matrix singular values. In this paper we bridge the gap between these two penalties and propose a simple method for solving the lq , q ∈ (0, 1), penalized least squares problem for matrix completion. We illustrate with simulations comparing our method to others in terms of solution quality.
منابع مشابه
Restricted Strong Convexity and Weighted Matrix Completion: Optimal Bounds with Noise
We consider the matrix completion problem under a form of row/column weighted entrywise sampling, including the case of uniform entrywise sampling as a special case. We analyze the associated random observation operator, and prove that with high probability, it satisfies a form of restricted strong convexity with respect to weighted Frobenius norm. Using this property, we obtain as corollaries ...
متن کاملGraph Matrix Completion in Presence of Outliers
Matrix completion problem has gathered a lot of attention in recent years. In the matrix completion problem, the goal is to recover a low-rank matrix from a subset of its entries. The graph matrix completion was introduced based on the fact that the relation between rows (or columns) of a matrix can be modeled as a graph structure. The graph matrix completion problem is formulated by adding the...
متن کاملEfficient ℓq Minimization Algorithms for Compressive Sensing Based on Proximity Operator
This paper considers solving the unconstrained lq-norm (0 ≤ q < 1) regularized least squares (lq-LS) problem for recovering sparse signals in compressive sensing. We propose two highly efficient first-order algorithms via incorporating the proximity operator for nonconvex lq-norm functions into the fast iterative shrinkage/thresholding (FISTA) and the alternative direction method of multipliers...
متن کاملRobust frequency-shaped LQ control
Certain frequency-shaped standard linear quadratic (LQ) controllers involving state feedback have attractive loop robustness properties. These robustness properties may vanish in passing to an output feedback scheme, as when state estimates are used instead of states. The known exception to date is when the plants are minimum phase and state estimation with loop recovery is used, as in LQG/LTR ...
متن کاملAccuracy Assessment for High - Dimensional Linear Regression
This paper considers point and interval estimation of the lq loss of an estimator in high-dimensional linear regression with random design. We establish the minimax rate for estimating the lq loss and the minimax expected length of confidence intervals for the lq loss of rate-optimal estimators of the regression vector, including commonly used estimators such as Lasso, scaled Lasso, square-root...
متن کامل